EINSTEIN SPACES AND CONFORMAL VECTOR FIELDS

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformal Vector Fields in Symmetric and Conformal Symmetric Spaces

Consequences of the existence of conformal vector fields in (locally) symmetric and conformal symmetric spaces, have been obtained. An attempt has been made for a physical interpretation of the consequences in the framework of general relativity.

متن کامل

Spaces of Conformal Vector Fields on Pseudo-riemannian Manifolds

We study Riemannian or pseudo-Riemannian manifolds which carry the space of closed conformal vector fields of at least 2-dimension. Subject to the condition that at each point the set of closed conformal vector fields spans a non-degenerate subspace of the tangent space at the point, we prove a global and a local classification theorems for such manifolds.

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

Conformal anomalies on Einstein spaces with Boundary

The anomalous rescaling for antisymmetric tensor fields, including gauge bosons, and Dirac fermions on Einstein spaces with boundary has been prone to errors and these are corrected here. The explicit calculations lead to some interesting identities that indicate a deeper underlying structure. Pacs numbers: 03.70.+k, 98.80.Cq Typeset using REVTEX

متن کامل

Conformal vector fields and conformal transformations on a Riemannian manifold

In this paper first it is proved that if ξ is a nontrivial closed conformal vector field on an n-dimensional compact Riemannian manifold (M, g) with constant scalar curvature S satisfying S ≤ λ1(n − 1), λ1 being first nonzero eigenvalue of the Laplacian operator ∆ on M and Ricci curvature in direction of a certain vector field is non-negative, then M is isometric to the n-sphere S(c), where S =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Korean Mathematical Society

سال: 2006

ISSN: 0304-9914

DOI: 10.4134/jkms.2006.43.1.133